Detection of potential enzyme targets by metabolic modelling and optimization: Application to a simple enzymopathy
نویسندگان
چکیده
MOTIVATION A very promising approach in drug discovery involves the integration of available biomedical data through mathematical modelling and data mining. We have developed a method called optimization program for drug discovery (OPDD) that allows new enzyme targets to be identified in enzymopathies through the integration of metabolic models and biomedical data in a mathematical optimization program. The method involves four steps: (i) collection of the necessary information about the metabolic system and disease; (ii) translation of the information into mathematical terms; (iii) computation of the optimization programs prioritizing the solutions that propose the inhibition of a reduced number of enzymes and (iv) application of additional biomedical criteria to select and classify the solutions. Each solution consists of a set of predicted values for metabolites, initial substrates and enzyme activities, which describe a biologically acceptable steady state of the system that shifts the pathologic state towards a healthy state. RESULTS The OPDD was used to detect target enzymes in an enzymopathy, the human hyperuricemia. An existing S-system model and bibliographic information about the disease were used. The method detected six single-target enzyme solutions involving dietary modification, one of them coinciding with the conventional clinical treatment using allopurinol. The OPDD detected a large number of possible solutions involving two enzyme targets. All except one contained one of the previously detected six enzyme targets. The purpose of this work was not to obtain solutions for direct clinical implementation but to illustrate how increasing levels of biomedical information can be integrated together with mathematical models in drug discovery. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Comparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea
Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...
متن کاملComparison of Different Targets Used in Augmented Reality Applications in Ubiquitous GIS
Drilling requires accurate information about locations of underground infrastructures or it can cause serious damages. Augmented Reality (AR) as a technology in Ubiquitous GIS (UBIGIS) can be used to visualize underground infrastructures on smartphones. Since smartphone’s sensors do not provide such accuracy, another approaches should be applied. Vision based computer vision systems are well kn...
متن کاملSpecific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay
Development of potent new anti-Shigella agents for rapid and specific detection and treatment is of great importance. Aptamers, nucleic acid oligomers capable of specific binding to a wide range of non-nucleic acid targets, may be of value for this purpose. In the present study, we used a Systematic Evolution of Ligands by Exponential enrichment (SELEX) process to select DNA aptamers that b...
متن کاملApplication of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کاملModification of Glucose biosensor using Pt/MWCNTs electrode and optimization by application of taguchi method
In this paper, multi-wall carbon nanotubes (MWCNTs), gold nanoparticles (GNp) and glucose oxidase (GOD) was developed for the specific detection of glucose. MWCNTs were chemically modified with the H2SO4–HNO3 pretreatment to introduce carboxyl groups which were used to interact with the amino groups of poly(allylamine) (PAA) and cysteamine via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 23 17 شماره
صفحات -
تاریخ انتشار 2007